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NON-MARKOVIAN LINE SHAPES OF PHYSISORBED ATOMS ON A CRYSTAL

Henk F. Arnoldus and Thomas F. George
Departments of Physics & Astronomy and Chemistry

239 Fronczak Hall
State University of New York at Buffalo

Buffalo, New York 14260

ABSTRACT

An atom adsorbed on the surface of a harmonic crystal is considered. The

binding potential well supports many vibrational bound-states, and the coupling

of the motion of the atom with the substrate gives rise to phonon-exchange

reactions, which subsequently amount to atomic transitions between the bound

states. This process of thermal relaxation of the adatom density operator is

comnonly described with reservoir theory, in which the crystal is regarded as a

thermal baite h an extremely short correlation time. The latter property then

justifies the neglect of any memory in the interaction, which is usually referred

to as the Markov approximation. It is shown, however, that the reservoir

correlation time is not necessarily small in comparison with the inverse

(relaxation) frequencies of the system, which implies a breakdown of this

approach. The equation of motion for the adatom density-operator is then solved

without the Markov approximation, and the result is used for the evaluation of

the spectrum and line profile for absorption of infrared radiation. Essentially

different results are obtained than with the approximate theory, but it turns out

that the solutions can be expressed in terms of the same parameters.
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I. INTRODUCTION

A very sensitive method for studying atomic or molecular systems and the

interaction with their environment (for instance collisions) is by observation of

the absorption line shapes. A low-intensity laser with power IL (energy per unit

of tim through a unit area, perpendicular to the direction of propagation),

frequency wL3 and polarization CL is scanned over the resonances of the molecule.

Dipole coupling between the system and the laser field then amounts to absorption

of radiation at a rate (energy per unit of time)
I

I(WL) - L Re d L e LT. (1.1)
c0Ac fdiToi(rc~ L

with p(T) the dipole-moment operator in the Heisenberg picture. The thermal-

equilibrium density operator 5 represents the state of the entire system of the

molecule, environment and interaction, but not the laser. The advantage of weak-

field absorption is that the incident field does not disturb the system, but only

probes it. Then the absorption profile can be obtained from the Golden Rule

which leads to Eq. (1.1), where reference to the laser field in the dynamical

variables 5 and p(r) has disappeared.

We consider adsorbed atoms on the surface of a crystal. Electromagnetic

(van der Waals) interaction between an adsorbate and the atoms of the substrate

is accounted for by a potential well, which supports many bounds states. The

motion of the atom will be restricted mainly to the direction perpendicular to

the surface, which will be denoted by the unit vector . Transition frequencies

between vibrational states are in the infrared, and the motion of the atom

induces an optical activity in this region of the spectrum. This implies that

the bond has non-vanishing dipole-moment matrix elements between the various

states, whereas both the atom and the crystal are assumed to be transparent for

infrared light. Since we neglect lateral motion, the dipole-moment operator

: e , , .% , . :,:... .;,...;. :; . J .. . .1..'?- " -, A" ... .,."..:..' •~
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takes the form 0 - pegi, with U a scalar operator in the Hilbert space, which is

spanned by the adatom states. Then we can write

P() - a exp(iL)V , (1.2)

for the time evolution of v, where L is the Liouvillian, which is related to the

Hamiltonian according to

Lp [H,p] , (1.3)

for an arbitrary Hilbert-space operator p. Here, H represents the entire system

of atom, crystal and interaction. Subsequently we use the identity

Tr[5p(),] - Trpexp(-iL )[vp] , (1.4)

which allows to cast the absorption profile in the form

() IL L lecz€Li e i(wL-L)r

I(WL)oLwL Re Tr Vodr e 0., ] . (1.5)
0 f

This representation clearly shows that the peaks of the spectrum are located at

the resonances of the complete system, which equal the eigenvalues of L rather

than the adatom transition frequencies. Moreover, the frequency dependence of

I(wL) reveals the details of the dynamics. From Eq. (1.5) it follows that the

shape of a spectral line is germane to the time evolution of the density

operator, which explains the significance of the study of absorption spectra.

I. EQUATION OF MOTION

The atom with mass m is bounded to the crystal by a potential V(z), where z

is the atom-surface normal distance, and hence the adbond Hamiltonian takes the

explicit form

V . **. .* , *,. . * . .. . . - . . .'. ,. . , . . , .. .. . ,'. .. .. .. ....-..
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H d--+ V(z) (21)
a 2m dz2

We shall not specify V(z) any further, but only remark that the common choice is

a Morse potential. 2 -7 A general representation for the Hamiltonian of a harmonic

crystal reads
8

H - L As(k)asaks (2.2)

ks

in terms of the phonon creation (a t) and annihilation (ak.) operators, which

obey boson commutation relations. The summation runs over the modes ks, with k

the wave vector and s the polarization, and w s(k) is the dispersion relation.

Coupling between the adatom bond and the phonon field is assumed to be brought

about by single-phonon transitions, which is accurate, as long as the level

separations of H do not exceed the cut-off frequency of the dispersion relation.a

Then the complete Hamiltonian can be written as

H - H + H - RS (2.3)a p

with the atomic part of the coupling given by
3

S - dV/dz (2.4)

in terms of the prescribed potential V(z). The operator R equals the z-component

of the displacement field for the crystal atoms evaluated in the vicinity of the

adsorbate. Explicitly this becomes

R v (a s + a tksk * (2.5)

ks

which involves the mass M of a crystal atom, the volumes V and v of the crystal

.,.. .
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and a unit cell, respectively, and the unit polarization vectors eks*

The equation of motion for the density operator p(t) is

d
iW-p(t) - [Hp(t)] , (2.6)

which has the solution

p(t) - exp(-iLt)p(O) (2.7)

in terms of a given intial state p(O). Comparison with expression (1.5) then

shows that the time evolution of p(t) is governed by the same exponential which

determines the spectral distribution of the absorption. Futhermore, Eq. (1.5)

contains the thermal-equilibrium state 5, which equals the long-time solution

mlim P(t) •(2.8)

t-M

III. RESERVOIR INTEGRAL

It will be obvious that an exact evaluation of exp(-iLt) is not feasible.

Fortunately, this is not necessary. It will turn out to be sufficient for the

calcualtion of observable quantities, like I(wL), to obtain an equation for the

reduced adatom density-operator, defined by

PO(t) Tr p(t) , (3.1)

where the trace runs over the states of the phonon field. The large crystal with

its many, closely-spaced, degrees of freedom (phonon modes) merely acts as a

thermal bath, and its thermal-equilibrium density operator p is not affected by

th* presence of the single atom.

Now it is a standard procedure9 "1 1 in reservoir theory to derive an integral

of the equation of motion (2.6), which only involves the adbond density operator

PC(t). In particular, the product-form -RS for the interaction allows a concise
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formulation, and the result is1 2 (see Appendix for details)

i !L p(t) - LaPo(t) - ' LS fd exp(-iLa )Lc( )oo(t--), (3.2)

where we have introduced the Liouvillians

LaP " A-1[Ha,pJ (3.3)

LsP - [S,p] (3.4)

pertaining to the free evolution of the adatom (L a ) and the atomic part of the

interaction (S). The Liouvillian L (T) is defined as

*

L ( )p - G(r)Sp - G(T) *PS , (3.5)C

which contains the reservoir correlation function

G()- 20-2 Trp RYexp(iLp)R , (3.6)

with L o - '[H ,p]. Properties of the substrate only enter the equation (3.2)

through the function G( ), which equals the correlation function of the

displacement of the surface, due to thermal motion of the crystal atoms. In

Section VIII we shall evaluate G(r) explicitly for a simple model.

In deriving Eq. (3.2) from Eq. (2.6) we have taken for the initial state the

factorized form

p(O) - Po(O)p (3.7)

which can be done arbitrarily, since p(O) is not prescribed by the equation of

motion. The only approximation which had to be made to arrive at Eq. (3.2) was a

factorization p(t- ) - p0(t-)p p in the integrand. Of course, this is not exact,

but it is much better than the usual Markov approximation (Section VI), which can

,.- .. .- - .- . .. .. •. . - -. - -.- . .- ..- .-. . . , . .- , .-.- . .-.- -. , - -% . - . -.. -
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be argued as follows. The first term on the right-hand side of Eq. (3.2),

LaOo (t), would account for the evolution of the adatom if there were not crystal

at all (RS 5 0), and the second term represents the coupling to the heat bath.

This interaction gives rise to phonon transition between levels Ik> and jI>.

which can be regarded as stimulated absorptions of phonons from the crystal

(excitation of the atomic bond), and emissions of phonons into the crystal (decay

of the adsorbate). A transition Ik> -* I> then occurs at a rate nkakt, with nk

the population of level Ik> and akt the rate constant for this particular

transition. If we look at the relaxation integral in Eq. (3.2) as an operator

acting on PO(t-r), then akt equals a matrix element of this operator. The

factorization p(t-r) :-p (t-)5 p in the integrand then introduces a small error

in akt, but the correct time dependence is retained. Because it is the time

evolution of the density operator which determines the spectral distribution of

the absorption, rather than the density operator itself, only a small error is

made by the factorization.

IW. SOLUTION

In this section we solve Eq. (3.2). To this end, we first introduce the

Fourier-Laplace transform of G(r) by

C(M) - w"1 fdr exp(iwr)G(r) , (4.1)

which has the inverse integral

G(r) = Jdw exp(-iwr)C(w) T r > 0 , (4.2)

and in the same way we define the Fourier-Laplace transform of any other time-

dependent quantity. Substitution of the inverse integral of L (r) into the
c

equation of motion (3.2) then yields



~8

d t

i P W) - L P Wt L id It dw ep-i(w+L )r)L MwP(-) .(43dto0 a o 4wf S wep a c 0otT 43

With Eq. (3.5) we can express L (w) in C(M) as

Ec(Mp - O(w)Sp - C(-w) PS • (4.4)

The Fourier-Laplace transform of Eq. (4.3) is now easily found to be

(  - i( P(0) (4.5)
0 w-L a+ir(w) 0o

in terms of an operator inversion. Here, the frequency-dependent relaxation

operator r(w) is defined as

r(w) - - L d' W L(') . (4.6)

Equation (4.5) relates the (transformed) adatom density operator for t > 0 to the

given initial value p0(0), which is the desired solution.

Although Eq. (4.5) is an explicit solution, the combination of the operator

inversion, with the definition of r(w) as an integral over a product of an

inverse operator with L c(), might seem awkward. We shall show, however, that

the evaluation of the absorption profile has exactly the same degree of

complexity as in the usual Markov approximation.

V. EVALUATION oF r(w)

A matrix representation of r(w) is easily derived. First we rewite Eq.

(4.6) in the form

r(w) - - LS J dw' dr a c(') . (5.1)

Then we insert the inverse integral for E (w') and perform the w' integration,
c yC

* which yields the alternative expression for r(w)
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r(w) L dT e(a (T) . (5.2)

Atomic-bond states are by definition the eigenstates of H from Eq. (2.1).

The eigenvalue equation reads

Hak> - wkIlk> , (5.3)

which defines the states Jk> and the eigenvalues Awk" In turn, H. can be

represented with respect to its own eigenstates as

Ha =i Pk (5.4)

k

where Pk = Ik><kl is the projector onto Jk>. Then we can express La, Eq. (3.3),

in terms of projectors and calculate the exponential exp(-iLax). Finally we

obtain

exp(-iLa )P - j exp(-iAkt )PkPPt (5.5)

kt

in terms of the transition frequencies

Aktwk wL (5.6)

Next we substitute the definition (3.5) of L (T) into Eq. (5.2) and apply
c

the expansion (5.5), which gives

r(w)p - i ) Ls(PLSpPk(Akt+W) - P kSPL.(akt-)) (5.7)

k.

This result shows that r(w) can be expressed entirely in the adatom operator S

and the Fourier-Laplace transform of the reservoir correlation function G(r). In

order to find the matrix representation of r(w), we expand LS as a commutator

and then insert the closure relation
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P 1 (5.8)
L k
k

in various places in Eq. (5.7). In terms of the matrix elements

- <kisi.> - (5.9)

we then find

<al(r(w)p)Ib> (S a {SkSkt(Sbk+w)<tlpib>

kt

+ S bk Skt d(Aak-w) <alPlt>}

- (S ak S bd(AEa +W)

kZ

+ SbtSkaG(Akb-w) )<kIplt> , (5.10)

which relates the matrix elements of r(w)p to the matrix elements of P. We

notice that the frequency dependence of r(w) only enters as a shift of the

resonances AkZ in the arguments of the correlation function.

From Eq. (5.4) we immediately find

<al((w-La)p)lb> - (w-Aab )<alplb> (5.11)

for the matrix representation of w-La. Combination with Eq. (5.10) then gives

the expansion of w-L +ir, which is the matrix to be inverted for evaluation of

(w) from Eq. (4.5) and, as we shall see in due course, for the evaluation of

the absorption profile.

VI. MARKOV APPROXIMATION

In order to illuminate the physical significance of a frequency-dependent

relaxation operator, and to establish the relation to earlier approaches, we



sur marize the commonly-applied Markov approximation. The phonon field has a

broad spectrum of closely-spaced modes and a relatively high cut-off frequency

which equals the Debye frequency wD for a crystal. These features guarantee that

the reservoir correlation function G(r) decays to zero quite rapidly for

-1 -1
increasing r, and typically on a time scale OD " Besides D, the other two

typical time scales in the problem are the inverse of a level separation AkL and

the inverse of a relaxation constant ak , which is a matrix element of r(w).

One then asserts that

akt < « D ' (6.1)

for all ki, which implies that L (r) in the integrand of Eq. (3.2) only deviatesc
-I

from zero for T < wD ' Since this is small in comparison with the relaxation

time, by virtue of Eq. (6.1), we can replace the time evolution of p0(t-T) over

this small time interval by its free evolution. Hence we approximate p0(t-r) in

Eq. (3.2) as

Po(t-T) : exp(iL a)P 0 (t) , (6.2)

and subsequently we can take p0 (t) outside the integral. Then we assume that we

are not interested in the time evolution of p(t) in a time interval of the order

of uI after the preparation of the initial state p0o(O), which implies that we

can replace the upper integration limit t by infinity. In spectral terms the

restriction (6.1) means that the width of a line is much smaller than the Debye

frequency, and the second approximation states that we do not consider the

details of the line in the far wings, where "far" means of the order of OD from

the line center. Combining everything then yields the equation of motion in the

Karkov approximation

di - (L -,r )P(t) (6.3)
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where the relaxation operator is now defined as

r= LS dre L L( )e a (6.4)

The solution of Eq. (6.3) reads

PO(t) - exp(-i(L&ir)t)OP0 (O) , (6.5)

which has the Fourier-Laplace transform

P(0) . (6.6)
0 w-LairM 0

Comparison with our result (4.5) shows that the frequency dependence of the

relaxation operator has vanished, and that the Markov approximation effectively

amounts to the substitution r(w) * r 4. Conversely, it then follows from the

discussion in the first paragraph of this section that the frequency dependence
-l

of r(w) reflects a time resolution on a time scale of the order of wD . This, in
-I

turn, gives the process a memory time of the order of D " In the frequency

domain this has the implication that now also the line wings are properly

described, rather than only the line center.

VII. RELATIONS BETWEEN r(w) AND r

From the representation (5.2) of r(w) we directly deduce

fdw exp(-iwr)r(w) - Lsexp(-iLa)Lc() , T > 0 (7.1)

which reveals that the Fourier-Laplace inverse of r(w) is proportional to Lc( ),
-1

and therefore it decays to zero as a function of T on a time scale . Then

r(w) must have a frequency width of the order of wD. The right-hand side of Eq.

(7.1) also appears in the definition (6.4) of r , which gives rise to the

relation
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rM - " dw dx r(w)exp(-i(w-L )-r) (7.2)2w j 0  a

between rM and r(w). Carrying out the time integral gives alternatively

FM dr(w) L(7.3)

showing that rM does not equal r(0).

From Eq. (5.11) we observe that L a-w is diagonal with respect to the

tetradic adatom states Ia><bI. Therefore, expansion of the inverse of La -w in

terms of projectors reads

L1. - " a .I P PPE , (7.4)

La -W L. t-
kE

in terms of its action on an arbitrary p. With the general relation for Fourier-

Laplace transforms

Sf ddw' i__I (W') - (W) , (7.5)

we can evaluate the integral in Eq. (7.3). which gives

r M P - r(6kt)(PkPPt) . (7.6)

kt

This simple relation between rM and F(w) displays that the relaxation operator in

the Markov approximation is determined by r(w), where w only attains values which

are equal to the level separations 6kt*

With Eq. (5.10) we can calculate the action of r(6kt) on Pk PP. We replace

p in Eq. (5.10) by PkpP. and use the orthonormality relation <alb> - 6 for any
kab n

two states Ia> and Ib>. Then we sum over k and t and recall that 6ab + 6bc - ac

for every a,b,c, which gives the expansion of rM in matrix elements. We obtain

%V
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<81(r M )lb> kl(S ak S ktG(a tk )<tjob>

kE.

+ Sbk SkC(Atk)*<apIl>)

(Sak Sbo("ka)

kt

+ S btS kad(A Lb) )<kjo{Z> ,(7.7)

12which is the usual result. Comparison with the expansion (5.10) of r(w) shows

that the different matrix elements of p are connected by the same matrix

elements of S in both cases. The only distinction is that the correlation

function d appears with a different argument in the corresponding matrix elements

of rH and r(w). Since knowledge of the function C(w) is already required in the
MN

Markov approximation, no additional information about the crystal or the atomic

states is necessary in order to go beyond the Markov approximation.

VIII. RESERVOIR CORRELATION FUNCTION

Whether a Markov approximation can be justified or not depends on the

behavior of the reservoir correlation function G(T) from Eq. (3.6). In order to

study this issue quantitatively, we adopt a Debye model for the distribution of

phonon modes in the crystal. Then the dispersion relation reads

W (k) - c'kH(wD-c'k) ,(8.1)
S L

with c' the speed of sound and H the unit step function. For the thermal-

equilibrium density operator of the crystal at temperature T we take

p (Trp exp(-Hp/kB T)) - xp(-Hp kBT), (8.2)

where k3 is Boltzmann's constant. With the explicit form of the reservoir

operator R, Eq. (2.5), we then immediately find9
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G(x) - C fD dw w ((n(w)+1)exp(-iwx) + n(w)exp(iw )) (8.3)

where n(w) equals the average number of phonons in a mode with frequency w,

which is

I!

n(w) - (exp(Aw/kBT)-l)' - (8.4)

The parameter t is found to be

3w 
(8.5)

which depends only on the mass of a substrate atom and the cut-off frequency wD

of the dispersion relation.

It is advantageous to subdivide G(r) into a spontaneous and a stimulated

part according to

G( ) - G(T)sp + G(t) , (8.6)

with G(T)sp by definition the correlation function for T - 0. Since n(w) - 0 for

T - 0, we find with Eq. (8.3)

2 (1+iw1i)exp( -1D 
()-.7

G(,) )sp . C ' (wDr) 2  ,(8.7)

G(. )t 2C f0D dw n(w)wcos(w ) , (8.8)

showing that the stimulated part is real, wheras the spontaneous contribution

acquires an imaginary component. In Figs. 1 and 2 the correlation functions

G(r)sp and G( )st are plotted, and it appears that they indeed decay to zero on a
-1

time scale of the order of wD . However, the spontaneous part only disappears

as 1/(wDD), which is very slow. This implies that in integrals like in Eq.

A A7 ' ~.
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(3.2), there is a relatively large contribution from the tail of G( ), which

makes a Markov approximation at least doubtful when the Debye frequency becomes

of the order of other frequencies in the problem.

Matrix elements of the relaxation operator r(w) are determined by the

Fourier-Laplace transform of G(r), which we split up in the same way. From Eq.

(8.7) and Eq. (8.8) we derive

CMsp - C(w)H(-wD) - iw l(wD+wlogll-wD/wl) (8.9)

C() - CIwjn(IwI)H(wD-IwI)

-i- '1 Pfdw' n(w') 2w'w (8.10)W, 2 W (20

where P stands for principal value. The real part of C(w)sp is only nonvanishing

for positive frequencies, which has the significance that the spontaneous part of

the relaxation only amounts to a decay, whereas from the relation

-( )s w)= , (8.11)
C(wSt a Mst

it follows that the rate constants for stimulated excitation and decay of the

adatom are equal. In taking the limit w + 0 in Eqs. (8.9) and (8.10) we obtain

r d G(T))sp = -i D  , (8.12)

di G() st wfkBT I% 
(8.13)

wbich can be regarded as a measure of the relative contribution of the

spontaneous and stimulated component to the reservoir correlation function. The

functions (w)sp and (w)t are drawn in Figs. 3 and 4, respectively.

sp st
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IX. ABSORPTION SPECTRUM

Evaluation of the absorption spectrum I(wL) from Eq. (1.5) is now

straightforward. First we introduce the correlation operator

D(T) - e iLT , (9.1)

which is an operator in the Hilbert space of the adatom and the crystal. Its

reduced atomic part is denoted by D 0(), and the Fourier-Laplace transform D (w)

is defined by Eq. (4.1). Then Eq. (1.5) is equivalent to

e- L E0 1 .. L2Re TraD (wL) - (9.2)

Next we notice that D(T) obeys the equation of motion

d D(r) - LD(r) (9.3)

which is identical to Eq. (2.6) for the complete density operator 0(t). Hence we

can solve Eq. (9.3) for the reduced correlation operator along exactly the same

lines that led to Eq. (4.5). This gives

Bo(W) - w.La+ir(w) D (0) (9.4)

and the initial value equals

D (0) - Tr plo) - [P.0 , (9.5)

in terms of the long-time solution 0 of Eq. (4.5). Combining everything then0

yields

I(WL) - LL oEL Re Tr P . (9.6)
L'L E0 Ac a w.L-L,+ir(wL 0
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as a formal expression for the absorption spectrum. With the matrix

representation of r(w) from Section V, we can perform the operator inversion and

subsequently evaluate I(wL) for any configuration of bound states. We notice

that the relaxation operator r in the denominator has the incident frequency WL

as its argument. This reflects that the wL dependence of the absorption will

reveal the (non-Markovian) frequency dependence of the relaxation operator.

Expression (9.6) for I(wL) involves the steady-state solution of the

adatom density operator. From the general identity

lim Po(t) - -o " lim -ivwwo(W) , (9.7)

and Eq. (4.5), it follows that o is the solution of

(La- i(o))o - 0 . (9.8)

Therefore, it is not necessary to calculate the Fourier-Laplace inverse of Eq.

(4.5) and then take the limit t-, which would be a cumbersome procedure. We

remark that 5 is completely determined by the relaxation operator at the single0

frequency w = 0, in contrast to p0 (t) for t < -, which involves r(w) at all

frequencies w.

X. LINE SHAPE

An adsorbate potential V(z) will in general have many bound states (- 25),

and every transition frequency akt gives rise to a spectral line around wL - Ak"

In order to disentangle the contributions from the various resonances to the

absorption spectrum I(wL), we now consider the situation of two levels 12> and

1l> which are separated by w2-W1 - 0° > 0. The resulting profile I(wL) is then

called a spectral line.
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Diagonal matrix elements of the derivative of any potential vanish

identically if the wave functions are eigenfunctions of a Hamiltonian of the form

(2.1).13 This implies S1l = $22 = 0, and it follows from Eq. (5.10) that the

relaxation operator r(w) does not couple between populations and coherences.

Since for two levels the phase of a wave function can have no significance, we

can take the matrix elements p12 and S12 to be real. Then Eq. (9.6) can be

rewritten as

I(WL) ILwLB(I-i 2)' Re <kl LLi ()(12><lI-Il><21))I> , (10.1)
kL

where nk = <kI-0 k> is the steady-state population of level lk>, and B is the

Einstein coefficient for stimulated transition, defined as

B(- w( 2c) -0 A)112.!L (10.2)

The summation in Eq. (10.1) runs over (k,) - (1,2) and (2,1) only.

Solving Eq. (9.8) for po in the case of two levels is trivial. We only

mention that the population difference n-n 2, which occurs in I(wL), becomes

Re C(w o)s
n -- nOSD (10.3)n1 n2  Re((wo) sp+2C(w0st) 

We note that this quantity is independent of the interaction matrix element S12

and completely determined by the reservoir correlation function C(w ).

Obviously, this is an artifact of a two-level system.

With the basis 12><11 and 11><21 we find

WL-W~in(L) in(wL)

L-La+ir(wL ) - (10.4)

Ki,( wL) wL+1h)+irl(wL)
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for the relevant part a! this matrix. Here the parameter function r(wL) is

defined by

n(WL) + (2- L) )
, (10.5)

which represents the operator r(wL) in Eq. (10.4). Then the absorption line

shape is readily found to be

2
-1 4wowERe n( L)

I(wL) - 1  B( 1-(2) 2_ 2 2 2 2(1.6)
(W 0WL+2wLImn (YL) +4w L(Re rI(W0)

In the Markov approximation q(wL) assumes the constant value n(Wo ), independent

of wL. Then n(wo) is merely a parameter, which can be adjusted to fit a line

shape. It appears that in our more thorough approach, the function n(w) should

be evaluated at the frequency wL of the probe field. Especially the property

Re n(L) - 0 , wL > wD , (10.7)

for a Debye model shows that the absorption is identically zero for wL > D'

whereas in the Markov approximation the absorption is finite in this case. That

I(wL) should vanish for wL > wD, follows from energy conservation. An absorbed

photon must eventually end up as an excitation of the phonon field, but for

>L > wD there are no phonon modes which can accomodate the quantum. Different

features of the line shape are illustrated in Figs. 5 and 6.

V.,. .V ~ ... .
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XI. CONCLUSIONS

Vibrational relaxation of physisorbed atoms on a harmonic crystal is

studied, without the usual Markov approximation. It has been shown that the

Markov approximation can be poor if the Debye frequency has an order of magnitude

which is comparable to the widths and positions of the spectral lines, or in

general where the line wings are concerned. We have derived a frequency-

dependent relaxation operator r(w), and from Eq. (7.1) it follows that r(w)

deviates from a constant value due to the finite correlation time of the

reservoir. This in turn gives rise to a memory in the time evolution of po(t),

which is expressed by the fact that po(t) obeys an integro-differential equation

(Eq. (3.2)) rather than a first-order differential equation. The memory is

brought about by the finite time-width of the operator Lc () in the integrand.

We have solved the equation of motion with a Fourier-Laplace transform and

applibl the same technique to evaluate the absorption spectrum. Significant

differences between the present theory and its Markovian equivalent are found in

the spectral line profile.
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APPENDIX. DERIVATION OF EQ. (3.2) FROM EQ. (2.6)

In this Appendix we derive Eq. (3.2) from the general equation of motion

(2.6). As an abbreviation we introduce the interaction Liouvillian Li as

Lip = -% I[RS,p . (Al)

Then Eq. (2.6) reads

i Lp(t) = (La + L + L (A2)

which has to be transformed into an appropriate equation for p0 (t). Integration

of Eq. (A2) gives

-i(La+Lp)t

p(t) - e ap P(O)

M -(a +L p)(t-t') Lio(t, )  (A3)
, -i dt' e
~0

Next we replace t by t' and substitute the right-hand side of Eq. (A3) for p(t')

in the integrand. Differentiating the result with respect to time and changing

the integration variable then yields

d -i(L +Lp)t
i p(t) - (L +L )p(t) + L e a +L p(O)

t -i(La+Lp)i

-iL dTe a L LiP(t-T) (A4)
.0 i

as an exact integral of Eq. (A2).

t . . .. . . A % A A • A . .* *~ - .
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As initial state p(O) we take p(O) P po(O)p, Eq. (3.7), and subsequently we
0 p

factorize p(t-T) in the integrand, as argued to be reasonable in section III.

- Then we take the trace over the phonon states and insert definition (Al) for L..

The second term on the right-hand side vanishes identically as follows from

-IL t
Trp(Re P p) TrpRPp - 0 ,(AS)

p p p p

where the right-most equality relies on the explicity form (2.5) of R. The

appearance of two factors Li in the last term of Eq. (A4) gives rise to four

terms, since L. is a commutator. Because R and S commute, as do L and L , we
1 a p

can rearrange every term in such a way that all phonon operators are to the

right, and all adatom factors are to the left. As a last step we use R M R, the

cyclic invariance for operators under a trace, and

A-Ht -Ht
e iLt = e p e (A6)

for any L and p. Comparison with the definition (3.5) of Lc () then shows that

Eq. (A4) can be cast in the form (3.2).
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FIGURE CAPTIONS

Fig. 1. Real (a) and imaginary (b) part of the spontaneous component of the

reservoir correlation function as a function of wD and divided by .

Fia. 2. Stimulated part of the reservoir correlation function, which is real, as

a function of wDT and divided by Cw. Curve (a) corresponds to )wD B T. In

curve (b) (wi D - 2kBT) the plot is truncated at wDT - 10.

FiR. 3. Real (a) and imaginary (b) part of (w) SP as a function of W/wD and

divided by CwD. For w < 0 and w > wD the real part vanishes identically. The

singularity of the imaginary part at w = wD is a result of the sharp cut-off WD

of the dispersion relation. For any smooth but still arbitrarily steep decay at

w - w , the value of Im((wD)sp would remain finite.

Fit. 4. Plot of the real (a) and imaginary (b) part of O(M)st/wD as a function

of w/w , and for )wD - 2kBT. For Ijw > wD the real part disappears.

Fig. 5. Line profile I(wL) as a function of wL/wo and divided by IL)I B(n-nR2).

The parameters are CS2 0.4, wD - 3wo and kBT - D . Curve (b) is calculated

with Eq. (10.6) and curve (a) is the Markov approximation. The line shapes are

not Lorentzians, as follows from their asymmetry around the dotted line at wL -

w. For wL - w0 the exact value and the Markov approximation always yield the

same value for the absorption.

Fig. 6. Same as Fig. 5 but with )wD - 0.3kBT. In this case of relatively large

temperature the Narkov approximation (curve (a)) deviates considerably from the

exact value in the blue wing (wL > wo) of the line. Especially for wL > w the

Markov approximation predicts a finite absorption, which cannot be correct.
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